Analysis of inter-transcriber consistency in the Cat_ToBI prosodic labeling system

David Escudero a,⇑, Lourdes Aguilar b, Maria del Mar Vanrell c,e, Pilar Prieto d

⇑ Corresponding author.
E-mail address: descuder@infor.uva.es (D. Escudero).

Abstract

A set of tools to analyze inconsistencies observed in a Cat_ToBI labeling experiment are presented. We formalize and use the metrics that are commonly used in inconsistency tests. The metrics are systematically applied to analyze the robustness of every symbol and every pair of transcribers. The results reveal agreement rates for this study that are comparable to previous ToBI inter-reliability tests. The inter-transcriber confusion rates are transformed into distance matrices to use multidimensional scaling for visualizing the confusion between the different ToBI symbols and the disagreement between the raters. Potential different labeling criteria are identified and subsets of symbols that are candidates to be fused are proposed.

Keywords: Prosody; Prosodic labeling; Inter-transcriber consistency; ToBI

1. Introduction

The framework of intonational phonology, also known as the Autosegmental-Metrical (AM) model of intonation, has been applied to many languages, to thoroughly describe prosodic systems and develop methods of collecting intonation data. This framework has also been applied in automatic speech processing and database annotation to yield ToBI (TOnes and Break Indices) a prosodic labeling standard for speech databases that is based on Pierrehumbert’s thesis (Pierrehumbert, 1980). ToBI-based systems have been developed to label oral databases for many languages such as English (Beckman et al., 2005), Spanish (Beckman et al., 2000; Beckman, 2002; Estebas and Prieto, 2009), German (Grice and Benzmüller, 1995), Japanese (Venditti, 2005), Greek (Arvaniti and Baltazani, 2005), Korean (Beckman and Jun, 2000) and Catalan (Prieto, 2012; Estebas Vilaplana and Prieto, 2010) among others.

It is important to make clear that, as the developers of ToBI explicitly state, ToBI is not an International Phonetic Alphabet for prosody. Because intonation and prosodic organization differ from language to language, and often from dialect to dialect within a language, there are many different ToBI systems, each one specific to a language variety and the community of researchers working on that language variety (Ohio-State-University, 2006). From this point of view, a full intonational and prosodic description of a given language is needed before a ToBI-based transcription system is accepted as a community-wide standard.

The ToBI system consists of annotations at several time-linked levels of analysis. The three obligatory tiers are: an orthographic tier of time-aligned words; a break index tier which indicates the degree of junction between words; and a tonal tier, where pitch accents, phrase accents and boundary tones define intonational events. A fourth tier, the
miscellaneous tier, is provided to annotate any additional phenomena, such as disfluencies.

One of the advantages of using the ToBI systems for prosodic annotation is its reliable inter-transcriber consistency (see the favorable inter-transcriber reliability scores for the different systems in Section 5.1) due to the relatively simple labeling procedure proposed. Moreover, the ToBI systems presented for each language are generally based on and directly linked to fundamental research on prosody for each language. Yet despite the widespread use of the ToBI system, it also has its detractors (Prom-on et al., 2009; Hirst, 2005; Wightman, 2002; Herman and McGregor, 2002), in particular, because of the confusions that have arisen either in the tagging process, when more than one transcriber must label the same utterances, or when labeling is done automatically, since in the automatic labeling process, some of the points where ToBI markers need to be placed are not easily identifiable from the acoustic signal (González et al., 2010; Rosenberg, 2009; Rosenberg, 2010).

In phonologically-oriented prosodic transcribing systems, like ToBI, intercoder inconsistencies appear because the labeling process depends on perceptual criteria that are mainly dependent on the subjective human judges. Our point of view is that inconsistencies are due to the non-uniform acoustic expression of prosody and are inevitable. However, they represent a challenge for the development of prosodic speech synthesis and recognition systems across languages, as well as automatic prosodic labeling systems.

This paper has two goals. First, to run an inter-transcriber consistency test for Catalan speech data annotated with the Catalan-adapted version of ToBI. Catalan has been intensively analyzed from a prosodic point of view and a full-fledged ToBI annotation proposal (Cat_ToBI) has been in place for some time now (Prieto, 2012; Prieto et al., 2009; Aguilar et al., 2009–2011). It is therefore of considerable interest to subject Cat_ToBI to an inter-rater consistency test at this point. To this end, ten transcribers labeled prosodic events independently on a Catalan corpus of twenty sentences from four different speech styles using the most recent version of the Cat_ToBI system. The twenty sentences were extracts from recordings of a variety of discourse types, including spontaneous speech. Though favorable inter-transcriber reliability results have been reported for ToBI-labeled corpora of mainly read speech produced in a laboratory setting, fewer inter-transcriber reliability studies have been carried out for spontaneous speech (e.g., Yoon et al., 2004).

The second goal of this paper is to propose a low-cost procedure to automatically obtain three types of important information from an inter-transcriber consistency experimental test: (a) the most confusable symbols from experimental data; (b) the types of errors most commonly produced by labelers; (c) signs of insufficient pre-training in individual labelers. As is well known, the selection of skilled, experienced transcribers is crucial for producing a large database that is consistently and thus usefully labeled. The aim of the Glissando Project, which is one of the sponsors of this research (see Section 8) is to do precisely that, i.e. to compile a Spanish/Catalan prosodic corpus enriched with ToBI labels, and it was regarded as essential to be able to carry out these three tests before starting such a large-scale labeling process. It was assumed that the labels introduced by an unskilled labeler would differ significantly from the labels introduced by a proficient labeler, and consequently the consistency of the final corpus would be poor. In this paper, we review and formalize the commonly used metrics for measuring inter-transcriber consistency, and we use multidimensional scaling to easily discriminate proficient transcribers from those that are not. Furthermore, we propose a procedure to diagnose the common mistakes of the inexpert labeler in order to advise him/her in a potential retraining process.

That said, when a transcribing system is still undergoing development, the withdrawal of unskilled labelers may not be enough to increase consistency rates. This is because, as we will see in this paper, even taggers who are regarded as experts can exhibit low inter-labeler consistency rates when they label the same set of sentences. The reason for this is that they apparently use different tagging criteria for some of the ToBI symbols. We will present a procedure for analyzing inconsistencies that permits these situations to be pinpointed by identifying the problematic symbols that cause these conflicts. This analysis will have an impact on the evaluation of the ToBI system in itself.

Another source of inconsistencies is the existence of pairs of tags, or sequences of tags that are commonly confused by the labelers because of their high perceptual or acoustic similarity. In (Herman and McGregor, 2002) a set of transcribers are questioned about the inter-similarity of the various ToBI labels. Their answers show that, for example, they find the pair \(H^* \) and \(L + H^* \) the most difficult pair of symbols to separate. The identification of other easily confused labels suggest that it might be advisable to build alternative reduced versions of the prosodic set of labels. In fact, a reduction in the number of ToBI symbols has already been shown to be effective for not only speeding up the manual labeling process (Syrdal et al., 2001) but also increasing the automatic classification rates (Ananthakrishnan and Narayanan, 2008; Rangarajan Sridhar et al., 2008; Hasegawa-Johnson et al., 2005).

Thus, the overarching aim of this article is to present a language-independent procedure that will allow the inter-transcriber inconsistency to be computed and visualized while a prosodic corpus is being labeled in order to easily identify, on the one hand, misuses of the conventions by taggers, and on the other hand, the most confusable symbols.

The paper is organized as follows: the database is presented in Section 2 including a review of the Cat_ToBI system; next the experimental procedure is described with the report of the metrics (Section 3) and the visualization techniques (Section 4) that have been used to present the results.
that are reported in Section 5. We conclude with a discussion of the results and suggestions for future work in Sections 6 and 7.

2. Methods

This section consists of a description of the speech database to which the analysis tools were applied. The prosodic events were annotated within the Cat_ToBI framework.

2.1. Corpus

Twenty Central Catalan target utterances were selected from different corpora so that they represented the following four different discourse types:

3. Radio news.
4. Text reading (from the Festcat database Bonafonte et al., 2008).

The full set of sentences in Catalan, together with their English translation can be found in the Appendix A. Nine out of the twenty utterances are yes-no questions or wh-questions, four are narrow focus statements and the rest are broad focus statements. In total, the sentences contained 264 words. The duration of the 20 files is 89.8 seconds. The speech sources were 12 native speakers of Central Catalan (5 males and 7 females).

2.2. Labelers

A total of ten labelers participated in the labeling. They were asked to independently label audio files of the same twenty utterances. In terms of degree of prior experience with prosody and Cat_ToBI some of the labelers were absolute beginners while others had actually contributed to the development of Cat_ToBI and were fully comfortable with it. The labelers were divided into three groups: Group 1 (Experts), Group 2 (Familiar with the Cat_ToBI annotation system), and Group 3 (Beginners, completely new to any model of intonation or prosodic transcription). Group 1 comprised four labelers and Groups 2 and 3 had three labelers each. All labelers were native speakers of Catalan, with two dialects represented (Central Catalan and Balearic Catalan).

2.3. Transcription procedure

Following general ToBI conventions, transcribers had to perform the following tasks:

1. Mark any syllables which carry a clear prominence, that is, decide if there is a pitch accent.
2. If there is a pitch accent, decide the pitch accent type.
3. Mark different degrees of the strength of the boundary between two orthographic words, that is, decide the break index.
4. Decide the boundary tone type, according to the degree of prosodic breaking (intermediate phrase-ip vs. intonational phrase-IP).

Each transcriber was provided with a document describing the Cat_ToBI system (Prieto, 2012) as well as Cat_ToBI training materials (Aguilar et al., 2009–2011). The training materials contain a tutorial explaining each of the labels used in Cat_ToBI, along with recorded examples of transcribed utterances. There are also exercises to practice assigning the labels described in the text. These materials are designed to be self-explanatory. Moreover, absolute beginners attended a course (three sessions of three hours each) on the basics of the AM model and the ToBI labeling systems taught by the last author of the article.

Manual annotation was performed using the Praat tool (Boersma and Weenink, 2011). The starting point was a TextGrid file (Boersma and Weenink, 2011) for each sentence with its orthographic and phonetic transcription, which had been performed manually on the original set of sentences. Transcribers used both the audio information as well as the visual information (waveform, spectrogram, and F0 curve) to make labeling decisions about prosodic features. The key elements to be labeled were prominence, prosodic boundary strength and pitch accent and boundary tone types. The labelers had ample time to perform the task and could go back to revise their initial labeling. Fig. 1 shows an example of the labeling procedure used, showing the orthographic, phonetic, and Cat_ToBI prosodic transcription of the target sentence.

2.4. The Cat_ToBI system

The description of Catalan prosodic organization and intonation presented here is based on early work on Catalan within the framework of intonational phonology (Prieto, 2012; Prieto et al., 2009). The most updated description of the Cat_ToBI proposal may be found in (Prieto, 2012) and on the Cat_ToBI Training Materials website (Aguilar et al., 2009–2011). As in other languages analyzed within the ToBI framework, Catalan intonational events are of two types, namely pitch accents (or pitch movements that are associated with metrically strong positions), and boundary tones (or tones that are anchored to phrase edges). The phrases that are marked by the placement of these boundary tones are an important component of the metrical structure in the language.

As far as prosodic organization is concerned, Cat_ToBI proposes to analyze the Catalan data as having four levels of phrasing: the prosodic word, the phonological phrase, the intermediate phrase (ip) and the intonational phrase.
Evidence in support of the prosodic word, the intermediate phrase and the intonational phrase are described in Prieto (2012), Aguilar et al. (2009–2011), where it is also acknowledged that the existence in Catalan of the phonological phrase is an unresolved issue. According to this description, in Cat_ToBI, five levels are included in the break-index tier: Break 0, to mark cohesion between orthographic forms; Break 1, to mark boundaries between prosodic words; Break 2, to mark a level of phrasing below the intermediate phrase; Break 3, to mark the boundaries of intermediate phrases; and Break 4, to mark the boundaries of intonational phrases.

For the intonational analysis of Catalan utterances, in Prieto (2012), Aguilar et al. (2009–2011) two types of tonal events are recognized: (i) pitch accents, or local tonal events which are associated with metrically strong syllables and which confer accentual prominence to these syllables; and (ii) boundary tones, or tonal events associated with the boundaries of prosodic domains, at both the right edge of intermediate phrases and the right edge of intonational phrases. It should be noted here that some authors have argued that the phrase accent category can be dispensed with, and that only one type of boundary tone is needed.

According to this, Catalan has six basic pitch accents H^\ast, $L+H^\ast$, $L+>H^\ast$, $L^{\ast}+H$ and $H+L^\ast$, with the following upstepped and downstepped pitch counterparts (i.e., scaled higher or lower than the previous pitch accent): $!H^\ast$, $L+!H^\ast$, $L+!H^{\ast}$ and $!H+L^\ast$. With respect to the use of the symbol ‘>’, the same convention used in MAE-ToBI (Beckman et al., 2005) and in Gr_ToBI (Arvaniti and Baltazani, 2005) is adopted: if the maximum F0 peak does not actually occur within the syllable nucleus, the late F0 event is marked by putting the symbol ‘>’ before the H.

With respect to boundary tones, the following boundary tones and phrase accents have been attested (with the inventory of boundary tones differing as a function of its position in the prosodic hierarchy i.e., end of IP, end of ip, beginning of IP).

- Eight types of boundary tones at the end of IPs (marked with the % symbol after the tone): L%, $!H%$, $H%$, $HH%$, $HL%$, $LH%$, $L/H%$, $LHL%$
- Five types of boundary tones at the end of ips (marked with the - symbol after the tone): L-, $!H-$, H-, $HH-$, LH-
- One type of initial boundary tone (marked with the % symbol before the tone): %H.

For our analysis of inter-transcriber reliability, we distinguished a total of seven distinct pitch accent categories (the six basic pitch accents and the absence of accent). We decided to exclusively analyze the phonological identity of distinct pitch accent types, and upstep and downstep marks were disregarded in the analysis. Similarly, the distinction between ip and IP levels of phrasing was collapsed.

3. Measuring the inter-transcriber agreement

In a labeling process, inter-transcriber reliability quantifies the degree of agreement among labelers by giving a numerical score of how much consensus there is in the labels assigned by transcribers (Gwet, 2010). The measurements of inter-transcriber consistency used in this study will follow closely the ones used in previous prosodic tests.
to facilitate comparisons between studies. The ToBI labels are treated as categorical data so that the most commonly used metrics are joint agreement, kappa statistics and pairwise transcriber agreement, which are presented in the following sections.

3.1. Formulation

Let us refer to the prosodic events to be labeled by E_i, with $i = 1, \ldots, e$. Likewise, let us refer to the transcribers or labelers that participate in the tagging process by T_j, with $j = 1, \ldots, t$. Finally, let us refer to the categories into which assignments are placed by C_k, with $k = 1, \ldots, c$, i.e. the number of tags that can potentially be used. $C_{ij} \in C_k$ will be the category assigned by the labeler j to any event i.

3.2. Joint agreement

The joint agreement is the number of times each rating (i.e. the label C_k) is assigned by each labeler, divided by the total number of ratings (Uebersax, 1987). Let n_{ik} represent the number of raters who assigned the ith item to the kth category. By computing the n_{ik} values for every i and displaying this information for a given k the distribution of the quantity of agreement associated with each symbol, $f(n_k)$, can be visualized.

For a given k, the distribution of frequency $f(n_k)$ has a domain of values that goes from 1 to t (the 0 value is ignored as it represents events where none of the t raters assigned the symbol k). In the extreme case in which the t raters agree every time the symbol k appears, the mode of $f(n_k)$ would be t. Thus, a right mono-lobed distribution indicates a high agreement as most raters agree when they label the category k. Thus the closer the mode of the distribution is to t, the greater the consensus.

On the other hand the closer the mode of the distribution $f(n_k)$ is to 1, the more problematic the symbol. In an extreme case, every time the symbol k appears, only one of the t raters would mark it. Thus a left mono-lobed distribution is evidence of low agreement, since the labelers have used this symbol rarely and without consistency. Furthermore, bi-lobed distributions and flat distributions indicate a high confusion with potential wrong tagging criteria.

We have found no reference to ToBI labeling consistency tests in which this metric had been used. Results in this paper show the usefulness of this joint frequency test to evaluate differing degrees of consensus in the assignment of different labels.

3.3. Kappa statistics

Fleiss’ kappa (Fleiss, 1971) is a generalization of Scott’s pi statistic (Scott, 1955), a statistical measure of inter-rater reliability. It is also related to Cohen’s kappa statistic (Cohen, 1960). Whereas Scott’s pi and Cohen’s kappa work for only two raters, Fleiss’ kappa works for any number of raters, giving categorical ratings to a fixed number of items. The kappa indices are referenced with the greek letter κ.

The κ index expresses the extent to which the observed amount of agreement among raters exceeds what would be expected if all raters made their ratings completely randomly. The κ index is computed by means of the formula:

$$
\kappa = \frac{P_o - P_e}{1 - P_e},
$$

(1)

where P_o is the relative observed agreement among raters, and P_e is the hypothetical probability of chance agreement using the observed data to calculate the probabilities of each observer randomly saying each category. If the raters are in complete agreement then $\kappa = 1$. If there is no agreement among the raters (other than what would be expected by chance) then $\kappa = 0$. The factor $1 - P_e$ gives the degree of agreement that is attainable above chance, and $P_o - P_e$ gives the degree of agreement actually achieved above chance. If the raters are in complete agreement then $\kappa = 1$. If there is no agreement among the raters (other than what would be expected by chance) then $\kappa \leq 0$.

Let n_{ik} represent the number of raters who assigned the ith item to the kth category. First calculate p_k as the proportion of all assignments which were to the kth category:

$$
p_k = \frac{1}{e \cdot t} \sum_{i=1}^{e} n_{ik},
$$

(2)

The probability of change is then computed as:

$$
P_e = \sum_{k=1}^{c} p_k.
$$

Now calculate P_o, the extent to which raters agree about the ith event:

$$
P_o = \frac{1}{t(t-1)} \sum_{k=1}^{c} n_{ik}(n_{ik} - 1).
$$

(3)

Now compute P_o, to be entered into the formula for κ:

$$
P_o = \frac{1}{e} \sum_{i=1}^{e} P_i.
$$

(4)

In this paper, the function kappam.fleiss of the package irr of the software R (Ihaka and Gentleman, 1996) has been used to compute the kappa index κ in the different scenarios.

Table 1 shows how to interpret the significance of the kappa index value according to the Landis scale (Landis and Koch, 1977). This table is widely used, although it is not universally accepted. Some authors point out that these

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><0</td>
<td>No agreement</td>
</tr>
<tr>
<td>0.0–0.20</td>
<td>Slight agreement</td>
</tr>
<tr>
<td>0.21–0.40</td>
<td>Fair agreement</td>
</tr>
<tr>
<td>0.41–0.60</td>
<td>Moderate agreement</td>
</tr>
<tr>
<td>0.61–0.80</td>
<td>Substantial agreement</td>
</tr>
<tr>
<td>0.81–1.00</td>
<td>Almost perfect agreement</td>
</tr>
</tbody>
</table>
guidelines may be more harmful than helpful (Gwet, 2008), as the number of categories and events will affect the magnitude of the value: the kappa will be higher when there are fewer categories (Sim and Wright, 2005). In the context of prosodic labeling consistency tests, this is especially important since some of the labels occur very infrequently while other labels (or one of the labels) are very frequent.

This metric has been used in (Yoon et al., 2004) to contrast the inter-transcriber reliability of prosodic events on a subset of the Switchboard (Godfrey et al., 1992) corpus using adapted ToBI for English. Cohen’s kappa is also proposed in (Syrdal and McGory, 2000) to evaluate the reliability among transcribers using ToBI for American English under relatively optimal conditions.

3.4. Pairwise transcriber agreement

Another common procedure to measure interreliability in prosodic labeling experiments is to count the number of labeling agreements for all pairs of transcribers. Instead of comparing the labels assigned by individual transcribers against the labels of every other transcriber for the particular event to be analyzed. That is, 4 transcribers (T1, T2, T3, T4) would produce 6 possible transcriber pairs (T1T2, T1T3, T1T4, T2T3, T2T4, T3T4), and the criterion is conservative: if 3 of 4 transcribers agree, only 3 of 6 pairs will match, making the agreement rate 50% (agreement = agree/disagree + agree). For example, if a particular pitch accent was labeled by the first transcriber as H*, by the second transcriber as LH*, and by transcribers 3 and 4, as H*, the number of transcriber pairs who agree with each other is three (T1T3, T1T4, T3T4) and the number of transcriber pairs who disagree with each other is also three (T1T2, T2T3, T2T4).

More formally, the set of pairs can be defined as:

\[
Pairs = \left\{ (C_{i,j1}, C_{i,j2}) \mid i = 1, \ldots, e, j_1, j_2 = 1 \ldots t, j_1 < j_2 \right\}
\]

(5)

\(C_{i,j1}\) and \(C_{i,j2}\) being the categories assigned by the labelers \(j_1\) and \(j_2\) respectively to prosodic event \(i\). Let us call \(n_{m,n}\) (the superscript \(p\) refers to Pair) the number of times a labeler tagged a given subject \(i\) with the category \(m\) and another different labeler judged the same event to be \(n\), formally

\[n_{m,n} = \text{Card}\{Pairs\}((C_{i,j1}, C_{i,j2} = m,n) \lor (C_{i,j1}, C_{i,j2} = n,m)\}.
\]

(6)

The number of pairs in agreement is \(n_{p,n}^p = \sum_{i=1}^{e} n_{m,n}^p\) and the disagreement is \(n_{p,n}^d = \sum_{m=1}^{e} \sum_{k=1}^{t} n_{m,n}^p\). The pairwise transcriber agreement index can be computed as:

\[pta = \frac{n_{p,n}^p}{n_{p,n}^p + n_{p,n}^d}.
\]

(7)

This index has been used to assess ToBI since the seminal ToBI papers (Silverman et al., 1992 and Pitrelli et al., 1994), and it is considered a reference to test the consistency of other annotation systems before they can be considered standard (G._ToBI in (Grice et al., 1996), Gla_ToBI in Mayo et al. (1997), K_ToBI in Jun et al. (2000), J_ToBI in Venditti (2005)). Benefits obtained from the use of alternative tiers for ToBI have also been evaluated with this index (Brugos et al., 2008).

The pairwise transcriber agreement index has the advantage of permitting the consistency of every class to be analyzed separately: \(n_{m,n}^p\) represents the agreement of labelers when the class \(C_m\) is identified. \(n_{m,n}^p \) or \(n_{m,n}^d\) represents degree of the confusion of the symbol \(C_m\) with respect to the symbol \(C_n\). This information can be displayed as a squared, triangular \(c \times c\) contingency table or confusion matrix. To relate these indicators to the frequency of the symbol, we compute:

\[ptd_{m,n} = \frac{n_{m,n}^p}{\sum_{k=1}^{c} n_{k,m}^p + \sum_{k=1}^{c} n_{k,n}^p}
\]

(8)

Confusion matrices have been used by Herman and McGory (2002) and Yoon et al. (2004) to analyze the conceptual similarity of ToBI tones. Yoon et al. (2004) uses the confusion matrix in absolute terms while (Herman and McGory, 2002) introduces the equations above to compare tag assignments. Herman and McGory (2002) also presents separate tables for each pair of labelers.

4. Visualizing the inter-transcriber confusion with multidimensional scaling

The statistics described above have been commonly used to assess the degree of consistency in ToBI-framework systems, since high consistency is a requirement of the system before it can be considered a standard (Ohio-State-University, 2006). Nevertheless, the goal of this work is not to certify that Cat_TOBI has achieved the needed degree of consensus to be accepted as a standard system of prosodic annotation. As noted above, the speech database with prosodic annotations described in Section 2 will be taken as a source of data to which a new procedure is applied in order to visualize intercoder agreement and identify those symbols that can introduce important biases in the annotations of projects like Glissando that involve working with large corpora. In this section we explain how Multidimensional Scaling can be useful in this regard.

4.1. Multidimensional Scaling the basis

Multidimensional scaling (MDS) is a set of related statistical techniques often used in information visualization for exploring similarities or dissimilarities in data (Kruskal and Wish, 1978). Generally, the data to be analyzed is a collection of I objects on which a distance function is defined, \(\delta_{ij}\) = the distance between \(i\)th and \(j\)th objects. These distances constitute the entries in the dissimilarity matrix.
\[
\Delta := \begin{pmatrix}
\delta_{1,1} & \delta_{1,2} & \cdots & \delta_{1,I} \\
\delta_{2,1} & \delta_{2,2} & \cdots & \delta_{2,I} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{I,1} & \delta_{I,2} & \cdots & \delta_{I,I}
\end{pmatrix},
\]

such that \(\delta_{ii} = 0, \delta_{ij} \geq 0\) and \(\delta_{ij} = \delta_{ji}\). The goal of MDS is, given \(\Delta\), to find I vectors \(x_1, \ldots, x_I \in \mathbb{R}^N\) such that

\[|x_i - x_j| \approx \delta_{ij} \quad \forall i, j \in I.\]

Thus, MDS attempts to find a correspondence between the I objects and \(\mathbb{R}^N\) such that distances are preserved. If the dimension \(N\) is chosen to be 2 or 3, we may plot the vectors \(x_i\) to obtain a visualization of the similarities between the I objects.

There are various approaches to determining the vectors \(x_i\) as they are not unique. MDS is formulated as an optimization problem to be solved numerically, where \((x_1, \ldots, x_I)\) is a minimizer of the cost function:

\[
\min_{x_i \in \mathbb{R}^N} \sum_{i < j} (|x_i - x_j| - \delta_{ij})^2.
\]

4.2. Multidimensional scaling for inter-rater consistency evaluation

We propose the use of MDS to visualize the consistency of judgements by making \(\delta_{ij}\) relative to the inter-transcriber metrics. There are two situations in which this technique will be used: visualization of the inter-rater consistency, and visualization of the inter-symbol confusion.

Visualizing the distance between the judgements of every pair of labelers can be useful to identify badly trained taggers or different tagging criteria. The \(\kappa\) index can be obtained for every pair of labelers where \(\kappa_{ij}\) is the \(\kappa\) index computed with the samples of labeler \(i\) and labeler \(j\) in isolation. By making \(\delta_{ij} = \max(0, 1 - \kappa_{ij})\) we obtain a measurement of the distance between the pair of taggers such that the higher its value, the greater the inter-rater confusion. The computation of \(\delta_{ij}\) \(\forall i,j = 1,\ldots,t, i \neq j\) permits a distance matrix \(\Delta\) to be defined. MDS techniques allow a set of vectors \(x_i\) with \(i = 1,\ldots,t\) to be obtained so that each \(x_i\) represents a labeler and the distance between the vectors is assumed to be proportional to the confusion between the labelers. Dimension two is selected to easily display the distances between the judgements of the labelers on a 2D plot.

The second situation where we expect to obtain benefits from the application of MDS techniques is in visualizing the distances between the symbols that represent prosodic events. The index \(\rho_{ij}\) can be interpreted as the confusion between the pair of symbols \(i\) and \(j\) as explained in Section 3.4. The higher \(\rho_{ij}\) the greater the confusion between the pair of symbols. By making \(\delta_{ij} = \max(0, \rho_{i1}^p + \rho_{j1}^p - \rho_{ij}^p)\forall i, j = 1,\ldots,c\), with \(\rho_{ij}^p\) as described in Section 3.4, the \(\Delta\) matrix can be obtained to be displayed by using MDS techniques. By entering the terms \(\rho_{ij}^p\) and \(\rho_{ji}^p\), we guarantee that the more consistent symbols will be separated in the plot. As the term \(\rho_{ij}^p\) increases, the symbols get closer. The distances between the symbols on the MDS plot are representative of the confusion between them so that two symbols are close to each other in the MDS plot when different labelers have frequently assigned these symbols to the same event in the transcription procedure.

MDS techniques allow a set of vectors \(x_i\) with \(i = 1,\ldots,x\) to be obtained such that each \(x_i\) represents a class of symbols and the distance between the vectors is assumed to be proportional to the confusion between the symbols. Again, we select dimension two to easily display the distances between the ToBI symbols on a 2D plot.

MDS has been already used in the context of ToBI labeling as an inter-transcriber reliability measure in (Herman and McGory, 2002). In (Herman and McGory, 2002), MDS is used to convert into distances a categorical index named the Conceptual Similarity Index. These distances are assumed to be representative of the difference in criteria between taggers and displayed in a set of 2D plots, one for every pair of labelers. Our approach differs in that we use MDS to project on a 2D plot the confusion matrices for help in interpreting inter-rater information indices.

The next section reports the results obtained when these three tests were applied to the Cat_ToBI annotations made by the ten participants labelers on the twenty utterances taken from the Catalan corpus.

5. Results

5.1. Global inter-transcriber agreement

Table 2 presents the inter-rater agreement matrix according to the type of ToBI events (Pitch Accents, Boundary Tones, and Breaks – upper table) and according to the distribution of the presence or absence of the same ToBI events (lower table). The measures correspond to the two numbers in each cell of the three right-most columns are the kappa index and the pairwise inter-transcriber rate given as a percentage: in the upper Multiclass decision table, all symbols are considered while the lower Binary decision table contrasts only the presence or absence of the corresponding event. In both cases, the first row shows the global inter-rate agreement obtained in the prosodic annotation of the Catalan corpus using Cat_ToBI, while the rows below show the results reported for other ToBI systems, namely American English ToBI Am_ToBI (Syrdal and McGory, 2000), English E_ToBI (Pitrelli...
In the following sections, we put forward the use of a set of global inter-transcriber metrics to show that the analysis of inconsistencies can shed light on the reasons behind the observed confusions.

5.2. Joint agreement

In order allow us to go into the consistency analysis in greater depth, Table 4 depicts the joint agreement results, taking into account each of the categories considered in the prosodic annotation of the Catalan corpus. The Count columns show the number of labelers that assigned a given symbol and the Statistics columns report the grouping
(mean, median, and mode values) and dispersion statistics (i.e., Asymmetry coefficient (AC) and kurtosis coefficient Peña et al., 1999) of the distribution function \(f(n_k) \).

Here we clarify the meaning of the columns in Table 4. If we look at the first row in the upper portion of the table, we find the symbol 0 (no Pitch Accent). The value of the cell Count = 10 is 49 because 10 labelers coincide in assigning the label 0 to some item 49 times. That is to say, among all the words that were labeled by the 10 labelers, there are 49 for which all 10 labelers coincided in assigning a 0. The value of the cell Count = 1 is 15, meaning that only one labeler assigned the symbol 0 15 times, while the rest of the labelers tagged the item with a different label. The value of the cell Count = 5 is 10, meaning that 5 of the labelers were in agreement in assigning the symbol 0 10 times, while other labelers made use of different tag. The Statistics columns reflect the distribution values in the Count columns so that, for example, mean = 6.7 indicates that close to 7 of the labelers agreed in assigning the symbol 0.

The use of the joint agreement distribution is new in the field of prosodic labeling and allows us to identify the problematic categories, that is, categories showing a high degree of disagreement among raters.

The interpretation of the results in the Table should proceed as follows:

1. The closer the mean, median and mode values are to the maximum, the higher the consensus (the maximum is 10 as the number of labelers is 10).

2. The asymmetry coefficient measures how close the rates are to the minimum value (positive AC) or to the maximum value (negative AC). The Kurtosis coefficient is higher when data are grouped around a given value.

With respect to the information offered by the mean, median and mode values, two observations may be made:

- For Pitch Accents (Table 4), only the symbol 0 (absence of accent) seems to achieve an acceptable degree of consensus (mode = 10). For the remaining Pitch Accents, only the symbol L + H’ has a mean value higher than 4. The symbols L’ + H and L + > H’ are problematic because they have been identified very rarely (low total count) and whenever they have been assigned by any of the raters, the remaining raters do not agree (median = 1).

- For Boundary Tones (Table 4), symbols 0 (absence of Boundary Tone) and L% obtain the highest agreement rate, with mode = 10. HHP% and L% seem to be the easiest boundaries to label (mean = 6). On the other hand, the symbols LH%, LHL%, L!H% and !H% are problematic. H% and H!L% symbols achieve high number of isolated occurrences (mode = 1) but they also have a significant number of occurrences with a high agreement (mean > 3.7).

- For Breaks (Table 4), the highest agreement is obtained for Break 0 and 4 (mode = 10). Break 1 and Break 3 have a significant agreement (median = 8 and 5 respectively), but Break 2 is clearly problematic (median = 1).

Table 3
Examples of inter-transcriber labeling inconsistencies.

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Labels</th>
<th>Rater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence/Absence of accents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No m’has dit que anava a comprar roba?</td>
<td>[no], [na:] [bra:] [ro]</td>
<td>E4</td>
</tr>
<tr>
<td>(Didn’t you tell me to go shopping?)</td>
<td>[dik] [ro]</td>
<td>I1</td>
</tr>
<tr>
<td>Type of pitch accents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Que li duries?</td>
<td>H+ H+</td>
<td>E2</td>
</tr>
<tr>
<td>(What would you bring him/her?)</td>
<td>H+ L+H+</td>
<td>I1</td>
</tr>
<tr>
<td>Breaks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empassant salteu amb esforcí, vaig abraçar-lo tendrament, tement que esclatés a plorar</td>
<td>Empassant ... esforç 4 ... tendrament 2</td>
<td>E4</td>
</tr>
<tr>
<td>i jo ja no pogues aguantar més (Swallowing hard, I hugged him tenderly, fearing that he would break into tears and I could not take it any more)</td>
<td>... plorar 4 ... més 4</td>
<td>I1</td>
</tr>
<tr>
<td>Boundary Tones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eren les sis de la matinada</td>
<td>Eren ... matinada !H%</td>
<td>E2</td>
</tr>
<tr>
<td>i tota aquella gent</td>
<td>... gent H% ... prou L%</td>
<td>E3</td>
</tr>
<tr>
<td>semblava no tens-né mai prou.</td>
<td>... dormir HHP% ... companys? HH%</td>
<td>E4</td>
</tr>
<tr>
<td>Que no voleu anar a dormir, companys?</td>
<td>Eren ... matinada !H%</td>
<td>E3</td>
</tr>
<tr>
<td>(It was six a.m. and these people never seemed to get enough. Don’t you want to go to sleep, folks?)</td>
<td>... gent H% ... prou L%</td>
<td>E4</td>
</tr>
<tr>
<td></td>
<td>... dormir HHP% companys? HH%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eren ... matinada !H- ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>... gent H- ... prou L%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>... dormir H-... companys? HH%</td>
<td></td>
</tr>
</tbody>
</table>
Concerning the dispersion statistics, in terms of the asymmetry coefficient measurement, only the symbols 0 (Pitch Accents and Boundary Tones) and Breaks 0, 1 and 4 obtain satisfactory results for this indicator ($AC < -0.2$ in Table 4). The kurtosis coefficient is higher when data are grouped around a given value. For Cat_ToBI (Table 4), the highest values are obtained with the symbols H^\ast, H^+L^\ast and $L%$. Only Boundary Tone $= 0$ has a negative AC value. The remaining symbol has a grouped distribution which mean is close to one, indicating a problematic situation.

It is inferred from the results that the joint agreement table is useful to identify problematic symbols, when different symbols have been used to label the same prosodic event. Nevertheless, the information about the one or the other category to which each of the symbols is inconsistently assigned is missing. This is the reason why contingency tables in combination with multidimensional scaling have been applied to the data, as explained in the following subsection.

5.3. Pairwise inter-transcriber agreement and MDS plots

Table 5 reports results for pairwise inter-transcriber agreement measured for the different ToBI categories. Again, the results are organized for the data corresponding to Pitch Accents, Boundary Tones and Breaks. At left are shown contingency tables (two tables per type of ToBI event, both representing the number of pairs, in absolute and relative terms, respectively), while at right are shown the corresponding 2D plots that depict the inter-symbol distance obtained by applying the procedure explained in Section 4.2.

Contingency tables are difficult to interpret due to the high number of pairs taken into account. The transformation of these tables into a 2D plot by using multidimensional scaling is a useful tool that helps in the interpretation of results. Briefly, the shorter the distance in the 2D plot, the higher the inter symbol confusion. These tables provide that some pairs of symbols are more easily to be confused than others, in the following terms:

- For Pitch Accents, the symbols 0 (2594-36.2%) – the number in parenthesis here represent the value of the corresponding cell from upper and lower sub-tables in Table 4; i.e., absolute and relative agreement rates, respectively, while at right are shown the corresponding 2D plots that depict the inter-symbol distance obtained by applying the procedure explained in Section 4.2.

These tables provide that some pairs of symbols are more easily to be confused than others, in the following terms:

- For Pitch Accents, the symbols 0 (2594-36.2%) – the number in parenthesis here represent the value of the corresponding cell from upper and lower sub-tables in Table 4; i.e., absolute and relative agreement rates, respectively, while at right are shown the corresponding 2D plots that depict the inter-symbol distance obtained by applying the procedure explained in Section 4.2.

Very low rates have been obtained for the symbol $L+>H^\ast$: 19.2.4%. Symbols H^\ast, H^+L^\ast and L^+H are problematic because they obtain low relative rates
Table 5
Contingency table for Pairwise inter-transcriber agreement in Cat_ToBI transcriptions. From top to bottom, there are results for Pitch Accents, Boundary Tones, Breaks respectively (from top to bottom). Contingency tables are at left and the corresponding 2D plot depicting the inter-symbol distance are at right. There are two contingency tables per type of ToBI event, the upper of the two showing counts in absolute terms and the lower table showing counts in relative terms (in percentage). BI is Break I, with $I = 0, \ldots, 4$.

<table>
<thead>
<tr>
<th>Absolute term</th>
<th>Pitch Accents</th>
<th>Boundary Tones</th>
<th>Breaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_L^+</td>
<td>H_L^+</td>
<td>H_L^+</td>
<td>H_L^+</td>
</tr>
<tr>
<td>L_H^+</td>
<td>L_H^+</td>
<td>L_H^+</td>
<td>L_H^+</td>
</tr>
<tr>
<td>H_L^+</td>
<td>H_L^+</td>
<td>H_L^+</td>
<td>H_L^+</td>
</tr>
<tr>
<td>L_H^+</td>
<td>L_H^+</td>
<td>L_H^+</td>
<td>L_H^+</td>
</tr>
</tbody>
</table>

(10%, 9.7% and 12.7% respectively). The most frequent inter-class confusions can be visualized in the MDS 2D plot of Table 5. It presents four clusters of labels: (the first cluster) no accent, (the second cluster) $L + H^*$, (the third cluster) $L^* + H$, $H + L^*$ and L' and (the fourth cluster) H^* and $L + > H^*$. The third cluster is composed of the low accent tones (L) and the fourth cluster the high accent tones (H) except $L + H^*$. The closer the symbols the easier it is to confuse them so that most of the confusions seem to appear among conceptually similar symbols.

- For Boundary Tones, results are also coherent with the results obtained in Table 4: labels 0, $L\%$ and $HH\%$ seem to be the easiest symbols to tag; the symbol $H\%$ is also quite easily identified. The rest of the symbols are very frequently confused among themselves, forming a common cluster in the 2D MDS plot.
- For Breaks, the contingency table shows a fairly good percentage of pairwise inter-transcriber agreement in the case of Break 0, 1, and 4: 36.3%, 30.4% and 39.7% respectively. Consequently, the MDS 2D plot shows a triangle formed by these symbols. By contrast, the transcribers disagree with respect to the use of the symbol Break 2, which is frequently labeled as Break 3: this behavior can be observed as a cluster in the MDS 2D plot. This symbol is close to Break 4 because Break 3 is most often mislabeled as Break 4 (8.4%).

Although these results are consistent with the ones obtained when applying the joint agreement measures, we will explore our results further in order to find the reasons behind the reported disagreements. The next sections focus on the labelers’ behavior in order to identify whether the disagreements detected are due to lack of training or rather to difficulty in the application of different labeling criteria.

5.4. Inter-rater disagreement

Table 6 represents the kappa fleiss inter-transcriber agreement for the three types of prosodic events that were annotated in the Catalan utterances. The tables at left display κ coefficient of agreement between the labelers, while the graphs at right display the respective matrices in an MDS 2D plot that interprets the κ coefficient as a distance (Section 4.2 explains the procedure applied to obtain the distances). The advantage of the 2D plot is that it permits the pair of taggers that show the highest degree of agreement to be detected easily since the greater the agreement, the closer the labelers appear on the plot.

Results reveal particular behaviors in the labeling tasks since some of the labelers are plotted at quite a distance from the other labelers in the 2D Plot. This behavior is exhibited by b_1 in the Pitch Accent plot, b_3 in the Boundary Tones plot, and l_1 in the Breaks plot in Table 6.

On the other hand, some of the coders are grouped together in clusters. In Cat_ToBI, for Pitch Accents the first cluster (red oval) is E_1, E_3, b_2 (inter-transcriber κ from 0.72 to 0.98), and second cluster (light blue oval) is b_2 (inter-transcriber κ from 0.56 to 0.83) (Table 6); for Boundary Tones the first cluster (red oval) is E_1, E_3, b_2 (inter-transcriber κ from 0.82 to 0.99) and the second cluster (light blue oval) is E_2, E_4, l_1, i_2, i_3 (inter-transcriber κ from 0.69 to 0.90) (Table 6) and for Breaks the first cluster (red oval) is E_2, b_1, i_2, i_3 (inter-transcriber κ from 0.67 to 0.95) and the second cluster (light blue oval) is E_1, E_3, b_2 (inter-transcriber κ from 0.83 to 1.00) (Table 6). This tendency could indicate that the different groups of taggers are using alternate annotation criteria.

Fig. 2 mines the available data further in order to gain more information about the reasons for the observed inter-transcriber grouping. The five graphs in Fig. 2 show the inter-transcriber discrepancy for the Break Index category (with a graph for each of the five levels in this category). The results show that while Break 0 and Break 4 are quite consistent among labelers, the rest of the Breaks are more problematic. While Break 1 and Break 3 show two groups of labelers, Break 2 shows a greater dispersion, which indicates that the presence of this category generates clear uncertainty in labelers. The main point of the discus-
6. Discussion

There are a number of statistics which can be used to determine the degree of agreement among raters (inter-rater reliability, inter-coder agreement, or concordance), and they are more or less appropriate depending on the different types of measurement. For categorical data, the most popular ones (used to evaluate the consensus regarding the ToBI systems (Silverman et al., 1992; Pitrelli et al., 1994; Mayo et al., 1997; Yoon et al., 2004) but also to quantify the agreement in other annotation tasks, either phonetic (Pitt et al., 2005) or prosodic (Buhmann et al., 2002) are the joint agreement, the kappa statistics and the pairwise transcriber agreement, which is why we have applied them in this study. Nonetheless, we have also shown their limitations, and therefore proposed new procedures to refine the processing of the data.

The difficulty that human labelers face when it come to annotating a corpus of spontaneous unread speech is well known (to start with, it is hard to decide where a clause begins and ends, due to changes in communicative strategies, unfinished sentences, etc.) and these difficulties increase when the criteria are mainly perceptual, as in the prosodic labeling task used by a ToBI system. To address this problem, the tests for evaluating the degree of confidence of the manually obtained measurements have been refined by incorporating new procedures to visualize inconsistencies and to identify the sources of different annotation criteria. The MDS techniques are especially useful for this.

This section will assess the results of this methodology whose goal is to address problems involved in the perceptually-based transcription of levels of prosodic organization, namely, the identification of problematic symbols, the identification of problematic labelers and the identification of problematic symbols, which might be at the source of these inconsistencies transcription.

Table 6

Kappa index for each pair of Cat_ToBI transcribers. The rows correspond with the prosodic categories Pitch Accents, Boundary Tones and Breaks respectively (from top to bottom). Tables at left display the κ coefficient of agreement between the labelers indexed in the respective row and column (b stands for beginner, E for expert and i for intermediate skill level). At right are displayed the corresponding matrices in an MDS 2D plot that interprets the κ coefficient as a distance.
tion of potentially different tagging criteria. Although the paper presents results for Catalan at all levels of a ToBI-framework system, we suggest that in order to demonstrate the benefits of the application of the proposed methodology it is not necessary for us to be exhaustive in our analysis of all the cases we have identified.

In this section, therefore, we will concentrate on an analysis of the Break Indices, which are the cues for prosodic organization in ToBI systems. The results, which reveal a high degree of coincidence across languages, show that these cues can be considered stable, except when a difference appears in the annotation criteria due to the different degrees of proficiency of the transcribers.

6.1. Identification of problematic symbols

Since the ToBI system is grounded in the current state of knowledge of the prosodic and intonational phonology of a given language, it is unsurprising that different annotation criteria correspond to different stages of this knowledge. This is clear when we analyze the behavior of the transcribers with respect to the break indices Break 2 and Break 3. Table 2 shows that the inter-transcriber agreement for Cat_ToBI Breaks is substantial with $\kappa = 0.68$ and pairwise inter-transcriber index $pta = 77.14\%$. Nevertheless, results in Table 4 demonstrate that there is no consensus for some of the levels. As a whole, the symbols Break 0 and Break 4 have high agreement rates, but this is not true for the symbol Break 2, which is highly problematic because it is very infrequent and when it appears, few of the labelers agree on how and when to use it. The pta index results (Table 5) offer objective results on the proximity of Break 2 with respect to other symbols. The pairwise inter-transcriber agreement shows us that Break 2 is often confused with Break 3.

In practical situations, such as tagging a corpus, it might be decided to dispense with the symbol Break 2. If we merge the symbols Break 2 and Break 3 in order to build a new category, the new computation of the kappa fleiss metric increases from 0.68 to 0.71 and the pta goes from 77.14% to 79.24%. Even though the rate does not improve dramatically, the complexity of the task performed by the transcribers can decrease significantly if the number of symbols is reduced, and as a consequence, the time required to complete the labeling task will be shorter. Regardless of the theoretical implications, what we want to demonstrate is that the proposed methodology can make such decisions more objective and informed.

6.2. Identification of undertrained labelers

The joint agreement results (Table 4) and pairwise inter-transcriber agreement results (Table 5) point out a high confusion concerning the Break 3 and Break 1 labels. In order to better know the reasons that can explain the discrepancies, we analyze the inter-rater disagreement results of Table 6, where one of the labelers (in particular, $i1$) is emitting judgements that are clearly divergent from the rest.

Fig. 2. Intertranscriber discrepancy for Breaks. The 2D MDS plots represent the distance between taggers for a given ToBI symbol.
of the labelers. Since the Break 1 label is well defined in the conventions of the Cat_ToBI system (to mark boundaries between prosodic words), the interpretation of this behavior is that the transcriber is mis-assigning both Break 3 and Break 1.

In practical applications, such as the selection of the transcribers to work in the processing of the Glissando corpus mentioned in Section 1, Table 6 and the respective MDS plot could be used to identify badly trained transcribers taking into account objective criteria. In particular, the labeler il, should be discarded due to his/her divergences with respect to the rest of the labelers.

Thus, we offer a tool that can be used to select and evaluate the potential subjects that will participate in a given labeling task particularly any research project in which a high degree of consistency among labelers is needed in order to build a reliable prosodic corpus.

Moreover, this tool can have applications in the field of teaching the system to new transcribers. In our set of transcribers, if is seen as desirable to improve the proficiency of the labeler il, the precise visualization of the prosodic judgements of the rest of the labelers is a valuable source of information about how to correct the labeler’s misjudgements.

Plots in Fig. 2 have been obtained by computing the kappa fleiss index for each pair of labelers, as in Table 6, but isolating the subjects that have assigned the given symbol at least once. The \(\kappa \) index has been obtained for every pair of taggers and this index has been transformed into a distance by applying the procedure described in Section 4.2. As a consequence of the procedure, we have obtained one plot per symbol where the distances between the points on the graph representing raters are proportional to the inter-rater agreement. In our particular case, we have evidence that the dispersion of labeler il is due to faulty interpretation of Breaks 1 and 0. A more detailed explanation of the differences between the levels of prosodic organization should be enough to improve the proficiency of this labeler.

6.3. Identification of differences among labeling criteria

Inter-rater disagreement results depicted in Table 6 allow two different groups of labelers to be identified as far as the prosodic transcription of break levels is concerned: group 1 consists of labelers E1, E3 and h2 and group 2 is made up of the labelers E2, i3 and b1. The clustering cannot be explained by the training or proficiency of the transcribers, since in both groups experts and beginners are found. Another possible explanation for these discrepancies is the annotation criteria. If the kappa fleiss index is computed with the cluster of labelers E1 E3 h2, the kappa fleiss goes from 0.68 to 0.89. If additionally, as suggested in the previous section, we merge Break 2 and Break 3, the kappa fleiss goes up to 0.90 which constitutes Almost Perfect Agreement according to the Landis scale (see Table 1).

When the MDS plot of Table 6 referring to Breaks is split into the plots corresponding to the different breaks in Fig. 2, we observe that the grouping is evident in the plots corresponding to Break 1 and Break 3 but the grouping disappears when the symbols Break 0, Break 2 and Break 4 are taken into account. We can conclude that these two groups seem to use different criteria with regard to the symbols Break 1 and Break 3 and that these different criteria are responsible for the problematic results observed in terms of joint agreement (see Table 4) for Break 1 and Break 3.

The lack of consensus or the use of alternate criteria in the detection of Break 3 and Break 4 is clear from the data obtained in the different reliability scores. As can be observed in the Boundary Tone example in Table 3 (and in many other similar examples in the corpus), the different labeling obtained for Break 3 and Break 4 can be explained by the use of two different criteria in the identification of the two breaks. In the Cat_ToBI documents, including the Cat_TOBI Training Materials which the labelers used as an online reference, there is a description of the two criteria that must be used to identify the intermediate phrase boundaries, or Break 3, namely (1) the presence of a weaker disjunction from a perceptual point of view, which is instantiated generally by the absence of pauses; and (2) the idea that the intermediate phrase is typically marked by the presence of H- boundary tones, also called “continuation rises”. The fact is, however, that these two identifying criteria are partially non-overlapping, and one can find continuation rises that are followed by clear pauses. Depending on whether specific labelers attach more importance to one or the other of these two criteria, they will transcribe the boundary as either Break 3 or Break 4. It is clear that the revised version of the Cat_TOBI Training Materials must establish a priority ranking in the criteria for identifying intermediate phrase boundaries.

In this discussion, we have shown that the tools presented here represent a useful starting point for an inter-expert discussion about the points of discrepancy observed in the sentences of the corpus, a process which will be taken up shortly by the Cat_TOBI developers’ group.

7. Conclusions

For the preparation of an oral corpus for research purposes, the availability of tools that can help human subjects in the sometimes difficult task of prosodic annotation is undoubtedly of great interest. Thus, the development of this tool constitutes an important step towards achieving both homogeneity and consistency in the prosodic transcription of spontaneous speech. Further, the tool is able to estimate the attainable degree of agreement between transcribers by using objective measures.

In this paper we have systematically compared the performance of several transcribers carrying out Cat_TOBI prosodic labeling experience on various examples of Catalan utterances and evaluated inter-rater consistency of their transcriptions. In general, the results demonstrate that there is a high degree of coincidence in the transcriptions,
and therefore that the audio and visual cues to prosodic and intonational organization can be considered relatively stable. Comparison of the present results with those of previous ToBI reliability studies for other languages (namely G_ToBI in (Grice et al., 1996), Gla_ToBI in Mayo et al. (1997), K_ToBI in (Jun et al., 2000) and J_ToBI in (Venditti, 2005) reveals comparable agreement rates for this study. The global inter-transcriber results are 86.10% for Boundary Tone choices, 77.14% for Break Index choices, and 61.17% for Pitch Accent choices. These results lie in the range of previous interreliability results in the cited ToBI studies, which are in the interval [81.6%, 89.93%] for Boundary Tones, [65.5%, 74%] for Breaks and [52.2%, 86.57%] for Pitch Accents (see Table 2). Based on the results of the present inter-transcriber consistency tests, we feel that there is ample evidence to regard the Cat_ToBI system as a standard reference for prosodic labeling.

Although our reliability results for Catalan are of the same order of magnitude as previous studies, the slightly lower scores we obtained in the choice of Pitch Accent, Boundary Tone and Break Index types have deserved further investigation. While it is possible that the inconsistencies detected might be related to the type of speech transcribed (given that the Catalan speech corpus contained four different speech styles) or the relatively brief training given to some participants, the tools presented here have allowed us to identify a set of issues related to the difficulties involved in transcribing some specific categories.

In this paper, inter-rate reliability has been assessed by means of a set of metrics (joint agreement, pairwise agreement and kappa coefficient) and a visualizing tool (multidimensional scaling) under a common framework. The use of the joint agreement distribution is innovative in the field of prosodic labeling and has been demonstrated to be useful for identifying categories with a high disagreement among raters. The combined use of the pairwise inter-transcriber agreement with multidimensional scaling has permitted us to visualize the pairs of symbols that are frequently confused and those pairs that tend to yield greater consensus. The kappa index has allowed us to visualize the existing coincidence among every pair of labelers with the goal of identifying under-trained raters and differences in tagging criteria among different groups of labelers.

On the one hand, our analysis of the confusion clusters has revealed a number of issues that lead to the presence of problematic categories. For example, in Section 6, the common confusion between Break 3 or Break 4 has been traced back to partially overlapping identification criteria, which will need to be clarified in a revised version Cat_ToBI Training Materials through a more precise description and more clearly contrasting examples.

On the other hand, the high number of categories available to the transcribers for both Pitch Accent and the Boundary Tone categories has proven to be one of the serious sources of transcriptional confusions. Careful evaluation of the data has revealed that, for example, the inventory of rising pitch accents ($L + H', H'$ and $L + > H'$) is highly confusable. In the next periodic review of the Cat_ToBI system, this issue will have to be taken up. As noted above, the Cat_ToBI Training Materials are a web-based manual for teaching the system to new transcribers, with many recorded examples of transcribed utterances. The conventions are used, maintained and updated consistently from this site, and periodic rechecks are being performed on the data. As a result of the analysis offered in this paper, a simplified Cat_ToBI proposal is going to be put forward as a possible improvement of the system.

In sum, we have presented a low cost procedure that has proved useful for assessing two aspects of a consistency test in particular. First, the identification of the most frequently confused symbols provides evidence that their definitions deserve fresh consideration, and their fusion with more agreed symbols might be a one plausible option. In the specific case of Cat_ToBI, a set of suggestions have been put forward for fewer labeling distinctions both for the transcription of pitch accent events and for boundary tone events. Second, the results of this analysis can help guarantee the necessary level of proficiency of labelers prior to their undertaking the labeling of bigger corpora. Likewise, labelers whose output is seen to deviate from the general consensus must be retrained.

Finally, the proposed procedure can contribute to an efficient and reliable method for evaluating prosodic transcription of speech across languages, something which is needed for linguistic research on prosody in general, and for the development of prosody-dependent labeling and speech recognition systems in particular.

Acknowledgements

The authors are indebted to other researchers of the Grup d’Estudis de Prosòdia GrEP (Departament de Traducció i Ciències del Llenguatge, Universitat Pompeu Fabra) who contributed constructively to the discussion of this work while it was underway. Particular thanks are due to the subjects who performed the annotations of Catalan utterances (J. Borras-Comes, V. Crespo-Sendra, R. Sichel-Bazin, E. Estebas-Vilaplana and the postgraduate students CA, CR, EP and GV) for their valuable comments and information.

This research has been funded by six research grants awarded by the Spanish Ministerio de Ciencia e Innovación, namely the Glissando project FFJ2008-04982-C003-02, FFJ2008-04982-C003-03, FFJ2011-29559-C02-01, FFJ2011-29559-C02-02, FFJ2009-07648/FILO and CONSOLIDER-INGENIO 2010 Programme CSD2007-00012, and by a grant awarded by the Generalitat de Catalunya to the Grup d’Estudis de Prosòdia (2009SGR-701)

Appendix A. Contents of the corpus

Spontaneous speech extracted from the Map Task subcorpus of the Map Task dialogue corpus Atles interactiu de
1. Un cop deixes la paret lateral a la teva dreta, la hi deixes? Once you have left the wall on your right … Have you left it?
2. No, o sigui, és com si anessís cap al jardí Menor, però abans d’arribar-hi tires cap amunt i cap al jardí Major. No, in other words, it’s like going to the Small Garden but before you get there, go up and towards the Main Garden.
3. Hi ha un arbre, no?, suposo, a l’esquerra de l’acadèmia? There is a tree, right?, to the left of the academy?
4. O sigui que tu vas en direcció cap al final de la paraula Barbara? In other words, you go towards the end of the word Barbara?
5. No m’has dit que anava a comprar roba? Didn’t you tell me to go shopping?

Radio news subset from the Festcat database (Bonafonte et al., 2008):

1. Però no és molt esclau, això? But isn’t it a very slave occupation?
2. Per tota una generació, Silvia Munt serà SEMPRE, la Colometa. For an entire generation, Silvia Munt will ALWAYS be the Colometa (nickname, ‘little pigeon’).
3. El Bernabeu està completament desesperat! The whole Bernabeu stadium is utter despair!
4. Però això no és res! But it’s nothing!
5. Què hi fa, als camps de refugiats? What is helshe doing in the refugee camp?

Read text subset from the Festcat database (Bonafonte et al., 2008):

1. Des de sempre Hollywood ha produït pel·lícules desacordables per a homes sensibles amb serps, llops, aranyes o, fins i tot, extraterrestres. As long as I can remember Hollywood has produced inadvisable movies for sensitive men with snakes, wolves, spiders or even aliens.
2. He pensat que l’olor havia de ser una de les primeres diferències notables. I thought that the smell should be one of the first noticeable differences.
3. Empassant saliva amb esforç vaig abraçar-lo tendrament tement que esclatés a plorar i jo ja no pogués aguantar més. Swallowing hard, I hugged him tenderly, fearing that he would break into tears and I could not take it any more.
5. Eren les sis de la matinada i tota aquella gent semblava no tenir-ne mai prou. Que no voleu anar a dormir, companies? It was six in the morning and these people never seemed to get enough. Don’t you want to go to sleep, folks?

Spontaneous speech extracted from the guided interview subcorpus of the Atlas interactiu de l’entonació del català (Prieto and Cabré, 2007):

1. Què li duries? What would you bring him/her?
2. Tenui mandarines? Do you have tangerines?
3. Home, és d’en Jaume! Dude, it’s Jaume’s.
4. Va vine . . . ! Aw, come on . . . !
5. Ès la MARIA la que vol venir? Is it MARIA, who wants to come?

References
