

BOSS, Rap music, and a Dynamic oscillation model in human-machine communication

BOSS

- A Non-uniform unit-selection speech synthesis system developed at the institute of communication research and phonetics in the University of Bonn
- Designed for research: very modular
- Flexible in adaptation to new languages and adding new modules
- Open source
- Used in a project of the German Telecome in an automatic phone answering system

General Architecture

Unit selection process

BOSS

My work:

- General development (adaptation to new systems, error search etc)
- Module development:
 - F0 pattern classification algorithm based on temporal correlation
 - Prosody prediction based on classification and regression trees (CART) and hidden markov models (HMM)
 - Prominence prediction (rule based)
 - Adaptation for new synthesis units (PHOXSY) and diphone synthesis
 - Corpus integration
 - Development of a corpus integration toolkit (BOFU)
- Representation in ECESS (European center of excellence in speech synthesis)

Rap music

- Master project
- Project goals:
 - Formal description of speech-music-timing relationship
 - Building a formal model: a dynamic perceptionproduction mechanism
- Model evaluation: statistics and "audience" feedback modeling
 Uhuu ...
 ...yeah...
 ...yeah...
- Integrating the model into a rapping artificial agent
 - → rap synthesizer

Material

4 German rap songs performed by 3 professional artists

Basic terms: Beat Impacts and Onset+

Scenario

Global level: oscillator model output function

Statistic analysis results

- Beat Impact mean values remain stable at 0.5 (50%)
- Beat Impact standard deviations remain stable at 0.3 (30%)
- Correlations of P-Center deviations with Onset+ values between 0.9 and 0.96
- Other correlations appear to be individual for each song
- Bunch of correlations defined as a rhythmic song profile
- Idea: in case of optimal rhythmic representation by the oscillators song profiles of original rhythms and reproduced rhythms should be similar

Global level: Song profile replication

Dynamic perception-production oscillation model in human-machine communication

- Oscillators implemented in the brain, responsible for time perception, timing and coordination issues
- Evidence in psychology and phonetics for at least two oscillating mechanisms, one responsible for perception (=information clustering, rhythm perception, time windows etc) and one for production (motor coordination tasks)
- Back channel modeling in SFB673
- Modelling a timing mechanism in communication would provide more naturalness to the humanmachine communication AND provide insights of possible implementations in the human brain

Basic idea

General model architecture

$$\vec{y}(t'') = S\{\sum_{i} w_{i}o_{i}(t')\}$$

- Summed activation provoked by simultaneous firing
- Global cycle defines reoccurrence of output events
- The duration of an output event can be defined as an oscillation
 - → timing between the output events
- Weights can control activation potential

Experiments with the model

- First experiment to test the "percpetion" part of the model and find the optimal parameter configuration
- Second experiment: letting Max, an artificial agent, make rhythmic moves to a rap song
- Results show the general capability of the model entrain to the rhythm and produce a rhythmic output
- Problems occur on higher rhythmic levels

 → probably those levels are not really rhythmic anymore

Future work: Hybrid model layout

- Real rhythms are rather quasi-periodic (if periodic at all)
- A metric level as a learned statistical distribution of pulses (motivated by exemplar theory, Pierrehumbert (2001)

- Mean values as input for upcoming layers
- Hybrid oscillatorstatistical approach

GRÀCIES!